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Example (More details for Remark 2 in Handout 1): Let 0 < a < 1, define f : R → R

by f(x) =

ax+ x2 sin
1

x
if x 6= 0

0 if x = 0
. Then, f ′(x) =

a+ 2x sin
1

x
− cos

1

x
if x 6= 0

0 if x = 0
, where we use

the definition of the derivative to compute f ′(0), and f ′′(x) =

(2− 1

x
) sin

1

x
− 2

x
cos

1

x
if x 6= 0

does not exist if x = 0
.

Claim: There is no solution to the following system of equations

(1)

{
f ′(x) = 0

f ′′(x) = 0
⇐⇒

(
2x −1

2− 1

x2
−2

x

) sin
1

x

cos
1

x

 =

(
−a
0

)

We prove this claim by contradiction. Suppose that system (1) has a solution for some x, then
observe that, for this x in the system (1), the following system

(2)

(
2x −1

2− 1

x2
−2

x

) (
x1
x2

)
=

(
−a
0

)

has a solution x1 = sin
1

x
, x2 = cos

1

x
. (3)

However, if we solve the system (2) by using Cramer’s rule, we shall get

x1 =

∣∣∣∣∣−a −1

0 −2

x

∣∣∣∣∣∣∣∣∣∣ 2x −1

2− 1

x2
−2

x

∣∣∣∣∣
=

2a/x

−4 + (2− 1

x2
)

; x2 =

∣∣∣∣∣ 2x −a
2− 1

x2
0

∣∣∣∣∣∣∣∣∣∣ 2x −1

2− 1

x2
−2

x

∣∣∣∣∣
=

2a− a/x2

−4 + (2− 1

x2
)

which implies that x21 + x22 =
a2[4x2 + (2x2 − 1)2]

(1 + 2x2)2
=

a2[4x4 + 1]

1 + 4x2 + 4x4
≤ a2 < 1 (4)

This is a contradiction since, by (3), x1 = sin
1

x
, x2 = cos

1

x
is a solution of the system (2), and

satisfies that x21 + x22 = sin2 1

x
+ cos2

1

x
= 1 > a2 = x21 + x22 by (4). Therefore, the system (1) does

have a solution. This implies that when f ′(x) = 0, f ′′(x) 6= 0, therefore, f is not 1 − 1 around x.
Note that the Inverse Function Theorem does not apply here since f ′ is not continuous at x = 0.
Examples of curves in parametric form:
(1) Let f : R → R2 be defined by f(t) = (t, |t|). Note that the f is not differentiable at t = 0, and
f(R) = the graph of y = |x| over R.
(2) Let f : R → R2 be defined by f(t) = (t3, t2). Note that the f is everywhere differentiable,
but f ′(0) = (0, 0), and f(R) = the graph of y3 = x2 over R with a vertical cusp at (0, 0), i.e.

lim
x→0±

dy

dx
= ±∞.

(3) Let f : R→ R2 be defined by f(t) = (t3−4t, t2−4). Note that f is differentiable and f ′(t) 6= (0, 0)
for all t ∈ R. But, f(2) = f(−2) = (0, 0) i.e. f is not a globally one-to-one function, and the curve
f(R) is not differentiable at (0, 0).
Example 4(b) in Handout 1: Let F = {fn(x) = xn | n ∈ N x ∈ I = [0, 1]}. Note that for each
n ∈ N, and any x, y ∈ I, there exists a cn lying between x and y such that

(∗) |fn(x)− fn(y)| = n cn−1n |x− y| (by the Mean Value Theorem).
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For each n, choosing x = 1 and 0 ≤ y < 1 in (∗), we have

1− yn == n cn−1n (1− y)

Note that the left-hand-side approaches to 1 as n goes to ∞, i.e. n cn−1n on the right-hand-side ap-

proaches to
1

1− y
as n goes to ∞. This implies that if 1 > ε > 0, then |fn(1) − fn(y)| ≥ ε for all

0 ≤ y < 1, and for all sufficiently large n. Hence, F is not uniformly equicontinuous.
Some notions you need from before:
Exercise: (1a) Let S ⊂ Rp. When is S said to be open in Rp ? closed in Rp ? bounded? compact?
What is the limiting (or accumulation, or cluster) points set of S?
Exercise (1b) Let S ⊂ R, f : S → Rq. When is f said to be continuous on S? Let W ⊂ Rq, what
is f−1(W )?What is f(S)? What is the graph of f over S? If S is compact, what can you say about
f(S), and the continuity of f on S?
(2a) The Completeness Axiom (Sec. 1.5 in the book): Let ∅ 6= S ⊂ R, and let R be equipped
with the Euclidean distance ‖x − y‖ for any x, y ∈ R (note that ‖x − y‖ = |x − y| in R).If S has
an upper bound, then, by “bisecting” the set S, the least upper bound (or the supremum)
of S, denoted supS = sup{x | x ∈ S},exists in R, If S has a lower bound, then the greatest
lower bound (or the infimum) of S, denoted inf S = inf{x | x ∈ S}, exists in R. Using this
completeness property of R (or by “bisecting” S), one can show that
(2b) Theorem 1.18: Every bounded sequence {xn} in R (=⇒ sup{xn | n ∈ N}, inf{xn | n ∈ N}
exist) has a convergent subsequence ({xnk

} converging to sup{xn} ∈ R or inf{xn} ∈ R.)
By “bisecting” S, one can be easily generalize Theorem 1.18 to higher dimension Rp,
(2c) Theorem 1.19: Every bounded sequence {xn} ⊂ Rp has a convergent subsequence
(that converges to a point in Rp.)
(2d) Theorem 1.20: {xn} is a Cauchy sequence in Rp iff {xn} is convergent in Rp. [Note:
You should check that {xn} is a Cauchy sequence in Rp =⇒ {xn} is bounded in Rp]
Exercise: explain how (2a)−(2d) indicate that Rp, equipped with the Euclidean distance (metric),
has the completeness property if and only if every Cauchy sequence {xn} is convergent
in Rp. [e.g. Let xn denote the n digit decimal representation of

√
2, x1 = 1, x2 = 1.4, x3 = 1.41, · · · .

Note that xn is a Cauchy sequence in Q with lim
n→∞

xn =
√

2 /∈ Q, i.e. The Cauchy sequence {xn}
converges but it does not converge in Q, so Q does not have completeness property. ]
(3) Let S be a compact subset of Rp, f : S → Rq be a continuous map. Then f is uniformly contin-
uous on S, i.e. ∀ε > 0, ∃ δ = δ(ε) > 0, such that for any x, y ∈ S with ‖x− y‖ < δ we have ‖f(x)−
f(y)‖ < ε. Compare this with f is continuous on S, i.e. f is continuous at each x ∈ S, ∀ε >
0, and for each x ∈ S, ∃ δ = δ(ε, x) > 0, such that for any y ∈ S with ‖y − x‖ < δ we have ‖f(y)−
f(x)‖ < ε. [e.g. Let S = (0, 1), f(x) =

1

x
. Then for each ε > 0, x ∈ (0, 1) =⇒ x

2
> 0, since

|f(y) − f(x)| =
|y − x|
yx

<
2|y − x|
x2

, we may choose δ = min{x
2ε

2
, 1}, such that if |y − x| < δ then

|f(x)− f(y)| < 2|y − x|
x2

<
2δ

x2
≤ ε. Note that δ here varies according to x, the continuity of f is Not

uniform on (the noncompact set) (0, 1).]
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