Example (More details for Remark 2 in Handout 1): Let $0<a<1$, define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\left\{\begin{array}{ll}a x+x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$. Then, $f^{\prime}(x)=\left\{\begin{array}{ll}a+2 x \sin \frac{1}{x}-\cos \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$, where we use the definition of the derivative to compute $f^{\prime}(0)$, and $f^{\prime \prime}(x)=\left\{\begin{array}{ll}\left(2-\frac{1}{x}\right) \sin \frac{1}{x}-\frac{2}{x} \cos \frac{1}{x} & \text { if } x \neq 0 \\ \text { does not exist } & \text { if } x=0\end{array}\right.$. Claim: There is no solution to the following system of equations

$$
\left\{\begin{array}{l}
f^{\prime}(x)=0 \tag{1}\\
f^{\prime \prime}(x)=0
\end{array} \quad \Longleftrightarrow\left(\begin{array}{cc}
2 x & -1 \\
2-\frac{1}{x^{2}} & -\frac{2}{x}
\end{array}\right)\binom{\sin \frac{1}{x}}{\cos \frac{1}{x}}=\binom{-a}{0}\right.
$$

We prove this claim by contradiction. Suppose that system (1) has a solution for some x, then observe that, for this x in the system (1), the following system

$$
\left(\begin{array}{cc}
2 x & -1 \tag{2}\\
2-\frac{1}{x^{2}} & -\frac{2}{x}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{-a}{0}
$$

has a solution $x_{1}=\sin \frac{1}{x}, x_{2}=\cos \frac{1}{x}$.
However, if we solve the system (2) by using Cramer's rule, we shall get

$$
x_{1}=\frac{\left|\begin{array}{cc}
-a & -1 \tag{4}\\
0 & -\frac{2}{x}
\end{array}\right|}{\left|\begin{array}{cr}
2 x & -1 \\
2-\frac{1}{x^{2}} & -\frac{2}{x}
\end{array}\right|}=\frac{2 a / x}{-4+\left(2-\frac{1}{x^{2}}\right)} \quad ; \quad x_{2}=\frac{\left|\begin{array}{cc}
2 x & -a \\
2-\frac{1}{x^{2}} & 0
\end{array}\right|}{\left|\begin{array}{cc}
2 x & -1 \\
2-\frac{1}{x^{2}} & -\frac{2}{x}
\end{array}\right|}=\frac{2 a-a / x^{2}}{-4+\left(2-\frac{1}{x^{2}}\right)}
$$

which implies that $x_{1}^{2}+x_{2}^{2}=\frac{a^{2}\left[4 x^{2}+\left(2 x^{2}-1\right)^{2}\right]}{\left(1+2 x^{2}\right)^{2}}=\frac{a^{2}\left[4 x^{4}+1\right]}{1+4 x^{2}+4 x^{4}} \leq a^{2}<1$
This is a contradiction since, by (3), $x_{1}=\sin \frac{1}{x}, x_{2}=\cos \frac{1}{x}$ is a solution of the system (2), and satisfies that $x_{1}^{2}+x_{2}^{2}=\sin ^{2} \frac{1}{x}+\cos ^{2} \frac{1}{x}=1>a^{2}=x_{1}^{2}+x_{2}^{2}$ by (4). Therefore, the system (1) does have a solution. This implies that when $f^{\prime}(x)=0, f^{\prime \prime}(x) \neq 0$, therefore, f is not $1-1$ around x. Note that the Inverse Function Theorem does not apply here since f^{\prime} is not continuous at $x=0$.
Examples of curves in parametric form:
(1) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be defined by $f(t)=(t,|t|)$. Note that the f is not differentiable at $t=0$, and $f(\mathbb{R})=$ the graph of $y=|x|$ over \mathbb{R}.
(2) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be defined by $f(t)=\left(t^{3}, t^{2}\right)$. Note that the f is everywhere differentiable, but $f^{\prime}(0)=(0,0)$, and $f(\mathbb{R})=$ the graph of $y^{3}=x^{2}$ over \mathbb{R} with a vertical cusp at $(0,0)$, i.e. $\lim _{x \rightarrow 0^{ \pm}} \frac{d y}{d x}= \pm \infty$.
(3) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be defined by $f(t)=\left(t^{3}-4 t, t^{2}-4\right)$. Note that f is differentiable and $f^{\prime}(t) \neq(0,0)$ for all $t \in \mathbb{R}$. But, $f(2)=f(-2)=(0,0)$ i.e. f is not a globally one-to-one function, and the curve $f(\mathbb{R})$ is not differentiable at $(0,0)$.
Example 4(b) in Handout 1: Let $\mathscr{F}=\left\{f_{n}(x)=x^{n} \mid n \in \mathbb{N} x \in I=[0,1]\right\}$. Note that for each $n \in \mathbb{N}$, and any $x, y \in I$, there exists a c_{n} lying between x and y such that
$(*) \quad\left|f_{n}(x)-f_{n}(y)\right|=n c_{n}^{n-1}|x-y| \quad$ (by the Mean Value Theorem).

For each n, choosing $x=1$ and $0 \leq y<1$ in $(*)$, we have

$$
1-y^{n}==n c_{n}^{n-1}(1-y)
$$

Note that the left-hand-side approaches to 1 as n goes to ∞, i.e. $n c_{n}^{n-1}$ on the right-hand-side approaches to $\frac{1}{1-y}$ as n goes to ∞. This implies that if $1>\epsilon>0$, then $\left|f_{n}(1)-f_{n}(y)\right| \geq \epsilon$ for all $0 \leq y<1$, and for all sufficiently large n. Hence, \mathscr{F} is not uniformly equicontinuous.

Some notions you need from before:

Exercise: (1a) Let $S \subset \mathbb{R}^{p}$. When is S said to be open in \mathbb{R}^{p} ? closed in \mathbb{R}^{p} ? bounded? compact? What is the limiting (or accumulation, or cluster) points set of S ?
Exercise (1b) Let $S \subset \mathbb{R}, f: S \rightarrow \mathbb{R}^{q}$. When is f said to be continuous on S ? Let $W \subset \mathbb{R}^{q}$, what is $f^{-1}(W)$? What is $f(S)$? What is the graph of f over S ? If S is compact, what can you say about $f(S)$, and the continuity of f on S ?
(2a) The Completeness Axiom (Sec. 1.5 in the book): Let $\emptyset \neq S \subset \mathbb{R}$, and let \mathbb{R} be equipped with the Euclidean distance $\|x-y\|$ for any $x, y \in \mathbb{R}$ (note that $\|x-y\|=|x-y|$ in \mathbb{R}).If S has an upper bound, then, by "bisecting" the set S, the least upper bound (or the supremum) of S, denoted $\sup S=\sup \{x \mid x \in S\}$, exists in \mathbb{R}, If S has a lower bound, then the greatest lower bound (or the infimum) of S, denoted $\inf S=\inf \{x \mid x \in S\}$, exists in \mathbb{R}. Using this completeness property of \mathbb{R} (or by "bisecting" S), one can show that
(2b) Theorem 1.18: Every bounded sequence $\left\{x_{n}\right\}$ in $\mathbb{R}\left(\Longrightarrow \sup \left\{x_{n} \mid n \in \mathbb{N}\right\}, \inf \left\{x_{n} \mid n \in \mathbb{N}\right\}\right.$ exist) has a convergent subsequence $\left(\left\{x_{n_{k}}\right\}\right.$ converging to $\sup \left\{x_{n}\right\} \in \mathbb{R}$ or $\inf \left\{x_{n}\right\} \in \mathbb{R}$.)
By "bisecting" S, one can be easily generalize Theorem 1.18 to higher dimension \mathbb{R}^{p},
(2c) Theorem 1.19: Every bounded sequence $\left\{x_{n}\right\} \subset \mathbb{R}^{p}$ has a convergent subsequence (that converges to a point in \mathbb{R}^{p}.)
(2d) Theorem 1.20: $\left\{x_{n}\right\}$ is a Cauchy sequence in \mathbb{R}^{p} iff $\left\{x_{n}\right\}$ is convergent in \mathbb{R}^{p}. [Note: You should check that $\left\{x_{n}\right\}$ is a Cauchy sequence in $\mathbb{R}^{p} \Longrightarrow\left\{x_{n}\right\}$ is bounded in $\left.\mathbb{R}^{p}\right]$
Exercise: explain how $(2 a)-(2 d)$ indicate that \mathbb{R}^{p}, equipped with the Euclidean distance (metric), has the completeness property if and only if every Cauchy sequence $\left\{x_{n}\right\}$ is convergent in \mathbb{R}^{p}. [e.g. Let x_{n} denote the n digit decimal representation of $\sqrt{2}, x_{1}=1, x_{2}=1.4, x_{3}=1.41, \cdots$. Note that x_{n} is a Cauchy sequence in \mathbb{Q} with $\lim _{n \rightarrow \infty} x_{n}=\sqrt{2} \notin \mathbb{Q}$, i.e. The Cauchy sequence $\left\{x_{n}\right\}$ converges but it does not converge in \mathbb{Q}, so \mathbb{Q} does not have completeness property.]
(3) Let S be a compact subset of $\mathbb{R}^{p}, f: S \rightarrow \mathbb{R}^{q}$ be a continuous map. Then f is uniformly continuous on S, i.e. $\forall \epsilon>0, \exists \delta=\delta(\epsilon)>0$, such that for any $x, y \in S$ with $\|x-y\|<\delta$ we have $\| f(x)-$ $f(y) \|<\epsilon$. Compare this with f is continuous on S, i.e. f is continuous at each $x \in S, \forall \epsilon>$ 0 , and for each $x \in S, \exists \delta=\delta(\epsilon, x)>0$, such that for any $y \in S$ with $\|y-x\|<\delta$ we have $\| f(y)-$ $f(x) \|<\epsilon$. [e.g. Let $S=(0,1), f(x)=\frac{1}{x}$. Then for each $\epsilon>0, x \in(0,1) \Longrightarrow \frac{x}{2}>0$, since $|f(y)-f(x)|=\frac{|y-x|}{y x}<\frac{2|y-x|}{x^{2}}$, we may choose $\delta=\min \left\{\frac{x^{2} \epsilon}{2}, 1\right\}$, such that if $|y-x|<\delta$ then $|f(x)-f(y)|<\frac{2|y-x|}{x^{2}}<\frac{2 \delta}{x^{2}} \leq \epsilon$. Note that δ here varies according to x, the continuity of f is Not uniform on (the noncompact set) $(0,1)$.]

