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Example (More details for Remark 2 in Handout 1): Let 0 < a < 1, define f : R - R

1 1
2 . = .f 2 . - - -f
by f(z) = ar +x smx i x#()‘ Then, f'(z) = a+ :r;smx cosl‘ i x#o,where Wo use
0 ifz=0 0 ifz=0
1 1 2 1

2— —)sin— — —cos— if

the definition of the derivative to compute f’(0), and f”(z) = ( x> e T T 70 :
does not exist ifx =0

Claim: There is no solution to the following system of equations
/ 2x 1 in 2
-0 - sin — _
f'(x) =0 Q_E T cos —
x

We prove this claim by contradiction. Suppose that system (1) has a solution for some x, then
observe that, for this x in the system (1), the following system

o (7 ) 0-6)

: : 1
has a solution 1 = sin —, xy = cos —. (3)
T T

However, if we solve the system (2) by using Cramer’s rule, we shall get

—a —1 2z —a
2 1
0 T 2a/x Q_P 0 2a — a/x?
T L " 2 ) I
, 1 5 _4+(2_ﬁ) , 1 9 4+(2—;)
2z 2z
a’[4z? + (222 — 1)? a’[dz* + 1]
hich implies that x? 2= = <a’<1 4
which implies that 7 + x3 TETE [T 4?4t dgt = © (4)
This is a contradiction since, by (3), x; = sin—, x9 = cos — is a solution of the system (2), and
T x
1 1
satisfies that 7 + 25 = sin® ~ + cos> — = 1 > a® = 2% + 3 by (4). Therefore, the system (1) does

have a solution. This implieg that Wliyen f'(x) =0, f"(x) # 0, therefore, f is not 1 — 1 around z.
Note that the Inverse Function Theorem does not apply here since f’ is not continuous at = = 0.
Examples of curves in parametric form:

(1) Let f: R — R? be defined by f(t) = (¢, |t]). Note that the f is not differentiable at ¢ = 0, and
f(R) = the graph of y = |z| over R.

(2) Let f : R — R? be defined by f(t) = (t3,1%). Note that the f is everywhere differentiable,
but f’(0) = (0,0), and f(R) = the graph of y®> = 22 over R with a vertical cusp at (0,0), i.e.

(3) Let f : R — R? be defined by f(t) = (¢3—4t,t*—4). Note that f is differentiable and f'(¢) # (0,0)
for all t € R. But, f(2) = f(—2) = (0,0) i.e. f is not a globally one-to-one function, and the curve
f(R) is not differentiable at (0,0).

Example 4(b) in Handout 1: Let . = {f,(z) = 2" |n € Nx € I =0, 1]}. Note that for each
n € N, and any x,y € I, there exists a ¢, lying between = and y such that

(%) |fu(@) — fu(y)] =nc" 'z —y| (by the Mean Value Theorem).
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For each n, choosing x =1 and 0 < y < 1 in (%), we have

L—y"==nc" (1-y)

n—1

Note that the left-hand-side approaches to 1 as n goes to oo, i.e. nc}

on the right-hand-side ap-

proaches to ] as n goes to co. This implies that if 1 > € > 0, then |f,(1) — f.(y)| > € for all

0 <y < 1, and for all sufficiently large n. Hence, .% is not uniformly equicontinuous.

Some notions you need from before:

Exercise: (1a) Let S C RP?. When is S said to be open in R? 7 closed in R? ? bounded? compact?
What is the limiting (or accumulation, or cluster) points set of S7

Exercise (1b) Let S C R, f: S — R?% When is f said to be continuous on S7 Let W C RY, what
is f~1(W)?What is f(S)? What is the graph of f over S? If S is compact, what can you say about
f(S), and the continuity of f on S?

(2a) The Completeness Axiom (Sec. 1.5 in the book): Let () # S C R, and let R be equipped
with the Euclidean distance ||x — y|| for any z, y € R (note that ||z — y|| = |z — y| in R).If S has
an upper bound, then, by “bisecting” the set S, the least upper bound (or the supremum)
of S, denoted sup S = sup{z | x € S},exists in R, If S has a lower bound, then the greatest
lower bound (or the infimum) of S, denoted inf S = inf{x | z € S}, exists in R. Using this
completeness property of R (or by “bisecting” S), one can show that

(2b) Theorem 1.18: Every bounded sequence {z,} in R (= sup{z,, | n € N}, inf{z, | n € N}
exist) has a convergent subsequence ({z,, } converging to sup{z,} € R or inf{z,} € R.)

By “bisecting” .S, one can be easily generalize Theorem 1.18 to higher dimension RP,

(2c) Theorem 1.19: Every bounded sequence {z,} C R? has a convergent subsequence
(that converges to a point in RP.)

(2d) Theorem 1.20: {z,} is a Cauchy sequence in R? iff {z,} is convergent in R?. [Note:
You should check that {x,} is a Cauchy sequence in R? = {z,,} is bounded in RP?]

Exercise: explain how (2a)—(2d) indicate that R?, equipped with the Euclidean distance (metric),
has the completeness property if and only if every Cauchy sequence {z,} is convergent
in R?. [e.g. Let x,, denote the n digit decimal representation of V2,01 =1,00=14, x5 =141,--- .
Note that x, is a Cauchy sequence in Q with nhjEO T, = V2 ¢ Q, i.e. The Cauchy sequence {z,}

converges but it does not converge in Q, so Q does not have completeness property. |

(3) Let S be a compact subset of R?, f : S — RY be a continuous map. Then f is uniformly contin-
uous on S, i.e. Ve >0, 30 = d(e) > 0,such that for any =,y € Swith ||z — y|| < § we have || f(z) —
f(y)|| < e. Compare this with f is continuous on S, i.e. f is continuous at each z € S, Ve >
0, and for each z € S, 36 = d(e, x) > 0,such that for any y € Swith ||y — z|| < § we have ||f(y) —

1
f(z)]] < e [e.g. Let S = (0,1), f(z) = —. Then for each ¢ > 0, z € (0,1) = g > 0, since
T

|y — 2| ?
_ — <
) - fo) = < 2
2|y — 20
lf(x)— fly)| < ‘yxz il < g < €. Note that § here varies according to x, the continuity of f is Not

2y —
ly — =l 76, 1}, such that if |y — 2| < 0 then

, we may choose 0 = min{

uniform on (the noncompact set) (0,1).]
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