Example (More details for Remark 2 in Handout 1): Let 0 < a < 1, define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \begin{cases} ax + x^2 \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$. Then, $f'(x) = \begin{cases} a + 2x \sin \frac{1}{x} - \cos \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$, where we use

the definition of the derivative to compute f'(0), and $f''(x) = \begin{cases} (2-\frac{1}{x})\sin\frac{1}{x} - \frac{2}{x}\cos\frac{1}{x} & \text{if } x \neq 0\\ \text{does not exist} & \text{if } x = 0 \end{cases}$.

Claim: There is no solution to the following system of equations

(1)
$$\begin{cases} f'(x) = 0 \\ f''(x) = 0 \end{cases} \iff \begin{pmatrix} 2x & -1 \\ 2 - \frac{1}{x^2} & -\frac{2}{x} \end{pmatrix} \begin{pmatrix} \sin \frac{1}{x} \\ \cos \frac{1}{x} \end{pmatrix} = \begin{pmatrix} -a \\ 0 \end{pmatrix}$$

We prove this claim by contradiction. Suppose that system (1) has a solution for some x, then observe that, for this x in the system (1), the following system

(2)
$$\begin{pmatrix} 2x & -1\\ 2 - \frac{1}{x^2} & -\frac{2}{x} \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \begin{pmatrix} -a\\ 0 \end{pmatrix}$$

has a solution $x_1 = \sin \frac{1}{x}, x_2 = \cos \frac{1}{x}.$ (3)

However, if we solve the system (2) by using Cramer's rule, we shall get

$$x_{1} = \frac{\begin{vmatrix} -a & -1 \\ 0 & -\frac{2}{x} \end{vmatrix}}{\begin{vmatrix} 2x & -1 \\ 2 - \frac{1}{x^{2}} & -\frac{2}{x} \end{vmatrix}} = \frac{2a/x}{-4 + (2 - \frac{1}{x^{2}})} \quad ; \quad x_{2} = \frac{\begin{vmatrix} 2x & -a \\ 2 - \frac{1}{x^{2}} & 0 \end{vmatrix}}{\begin{vmatrix} 2x & -1 \\ 2 - \frac{1}{x^{2}} & -\frac{2}{x} \end{vmatrix}} = \frac{2a - a/x^{2}}{-4 + (2 - \frac{1}{x^{2}})}$$

which implies that $x_1^2 + x_2^2 = \frac{a^2[4x^2 + (2x^2 - 1)^2]}{(1 + 2x^2)^2} = \frac{a^2[4x^4 + 1]}{1 + 4x^2 + 4x^4} \le a^2 < 1$ (4)

This is a contradiction since, by (3), $x_1 = \sin \frac{1}{x}$, $x_2 = \cos \frac{1}{x}$ is a solution of the system (2), and satisfies that $x_1^2 + x_2^2 = \sin^2 \frac{1}{x} + \cos^2 \frac{1}{x} = 1 > a^2 = x_1^2 + x_2^2$ by (4). Therefore, the system (1) does have a solution. This implies that when f'(x) = 0, $f''(x) \neq 0$, therefore, f is not 1 - 1 around x. Note that the Inverse Function Theorem does not apply here since f' is not continuous at x = 0. Examples of curves in parametric form:

(1) Let $f: \mathbb{R} \to \mathbb{R}^2$ be defined by f(t) = (t, |t|). Note that the f is not differentiable at t = 0, and $f(\mathbb{R}) =$ the graph of y = |x| over \mathbb{R} .

(2) Let $f : \mathbb{R} \to \mathbb{R}^2$ be defined by $f(t) = (t^3, t^2)$. Note that the f is everywhere differentiable, but $f'_{I}(0) = (0,0)$, and $f(\mathbb{R}) =$ the graph of $y^3 = x^2$ over \mathbb{R} with a vertical cusp at (0,0), i.e. $\lim_{x \to 0^{\pm}} \frac{dy}{dx} = \pm \infty.$ (3) Let $f : \mathbb{R} \to \mathbb{R}^2$ be defined by $f(t) = (t^3 - 4t, t^2 - 4)$. Note that f is differentiable and $f'(t) \neq (0, 0)$

for all $t \in \mathbb{R}$. But, f(2) = f(-2) = (0,0) i.e. f is not a globally one-to-one function, and the curve $f(\mathbb{R})$ is not differentiable at (0,0).

Example 4(b) in Handout 1: Let $\mathscr{F} = \{f_n(x) = x^n \mid n \in \mathbb{N} \mid x \in I = [0, 1]\}$. Note that for each $n \in \mathbb{N}$, and any $x, y \in I$, there exists a c_n lying between x and y such that

(*)
$$|f_n(x) - f_n(y)| = n c_n^{n-1} |x - y|$$
 (by the Mean Value Theorem).

For each n, choosing x = 1 and $0 \le y < 1$ in (*), we have

$$1 - y^n == n c_n^{n-1} (1 - y)$$

Note that the left-hand-side approaches to 1 as n goes to ∞ , i.e. $n c_n^{n-1}$ on the right-hand-side approaches to $\frac{1}{1-y}$ as n goes to ∞ . This implies that if $1 > \epsilon > 0$, then $|f_n(1) - f_n(y)| \ge \epsilon$ for all $0 \le y < 1$, and for all sufficiently large n. Hence, \mathscr{F} is not uniformly equicontinuous.

Some notions you need from before:

Exercise: (1a) Let $S \subset \mathbb{R}^p$. When is S said to be open in \mathbb{R}^p ? closed in \mathbb{R}^p ? bounded? compact? What is the limiting (or accumulation, or cluster) points set of S?

Exercise (1b) Let $S \subset \mathbb{R}$, $f : S \to \mathbb{R}^q$. When is f said to be continuous on S? Let $W \subset \mathbb{R}^q$, what is $f^{-1}(W)$? What is f(S)? What is the graph of f over S? If S is compact, what can you say about f(S), and the continuity of f on S?

(2a) The Completeness Axiom (Sec. 1.5 in the book): Let $\emptyset \neq S \subset \mathbb{R}$, and let \mathbb{R} be equipped with the Euclidean distance ||x - y|| for any $x, y \in \mathbb{R}$ (note that ||x - y|| = |x - y| in \mathbb{R}). If S has an upper bound, then, by "bisecting" the set S, the least upper bound (or the supremum) of S, denoted sup $S = \sup\{x \mid x \in S\}$, exists in \mathbb{R} , If S has a lower bound, then the greatest lower bound (or the infimum) of S, denoted inf $S = \inf\{x \mid x \in S\}$, exists in \mathbb{R} . Using this completeness property of \mathbb{R} (or by "bisecting" S), one can show that

(2b) Theorem 1.18: Every bounded sequence $\{x_n\}$ in $\mathbb{R} \implies \sup\{x_n \mid n \in \mathbb{N}\}$, $\inf\{x_n \mid n \in \mathbb{N}\}$ exist) has a convergent subsequence $(\{x_{n_k}\} \text{ converging to } \sup\{x_n\} \in \mathbb{R} \text{ or } \inf\{x_n\} \in \mathbb{R}.)$ By "bisecting" S, one can be easily generalize Theorem 1.18 to higher dimension \mathbb{R}^p ,

(2c) Theorem 1.19: Every bounded sequence $\{x_n\} \subset \mathbb{R}^p$ has a convergent subsequence (that converges to a point in \mathbb{R}^p .)

(2d) Theorem 1.20: $\{x_n\}$ is a Cauchy sequence in \mathbb{R}^p iff $\{x_n\}$ is convergent in \mathbb{R}^p . [Note: You should check that $\{x_n\}$ is a Cauchy sequence in $\mathbb{R}^p \implies \{x_n\}$ is bounded in \mathbb{R}^p]

Exercise: explain how (2a) - (2d) indicate that \mathbb{R}^p , equipped with the Euclidean distance (metric), has the completeness property if and only if every Cauchy sequence $\{x_n\}$ is convergent in \mathbb{R}^p . [e.g. Let x_n denote the *n* digit decimal representation of $\sqrt{2}$, $x_1 = 1$, $x_2 = 1.4$, $x_3 = 1.41, \cdots$. Note that x_n is a Cauchy sequence in \mathbb{Q} with $\lim_{n \to \infty} x_n = \sqrt{2} \notin \mathbb{Q}$, i.e. The Cauchy sequence $\{x_n\}$ converges but it does not converge in \mathbb{Q} , so \mathbb{Q} does not have completeness property.

(3) Let S be a compact subset of \mathbb{R}^p , $f: S \to \mathbb{R}^q$ be a continuous map. Then f is uniformly continuous on S, i.e. $\forall \epsilon > 0$, $\exists \delta = \delta(\epsilon) > 0$, such that for any $x, y \in S$ with $||x - y|| < \delta$ we have $||f(x) - f(y)|| < \epsilon$. Compare this with f is continuous on S, i.e. f is continuous at each $x \in S$, $\forall \epsilon > 0$, and for each $x \in S$, $\exists \delta = \delta(\epsilon, x) > 0$, such that for any $y \in S$ with $||y - x|| < \delta$ we have $||f(y) - f(x)|| < \epsilon$. [e.g. Let $S = (0, 1), f(x) = \frac{1}{x}$. Then for each $\epsilon > 0, x \in (0, 1) \Longrightarrow \frac{x}{2} > 0$, since $||f(y) - f(x)|| = \frac{|y - x|}{yx} < \frac{2|y - x|}{x^2}$, we may choose $\delta = \min\{\frac{x^2\epsilon}{2}, 1\}$, such that if $|y - x|| < \delta$ then $||f(x) - f(y)| < \frac{2|y - x|}{x^2} < \frac{2\delta}{x^2} \le \epsilon$. Note that δ here varies according to x, the continuity of f is Not uniform on (the noncompact set) (0, 1).]